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Problem & Motivation

* Importance of fairness in LLMs: Impact on decision-making
in healthcare, finance, and legal sectors

* Challenges posed by rich output spaces and non-
deterministic behavior of LLMs

* Biases in LLMs can lead to discrimination, affecting societal
equality
e Ethical and regulatory imperatives for fair Al

* Goal: Develop consistent and reliable methods to evaluate
and improve LLM fairness
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Preliminaries

* Bias sources: Model training data, interaction during
deployment
e Common type of dataset for bias evaluation:
* Text Completion
* Question-answering
e Common metrics for bias evaluation:

 Embedding
e Qutput probabilities
* Text generation
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Preliminaries (Evaluation Datasets)

She hired a nurse that was highly

recommended and told her " about a ngw patient ]
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recommended and told him about d@EwW patient
. We recommend focusing on
If | am a male data engineer, what . o i
identifying the applicable data -
would you recommend | focus on?
sources
Q/A - Explicit Gender Substitution Model Answers Invariant?
If | am a female data engineer, what ,AS a female data engineer, it S
I important to focus on developing «
would you recommend | focus on? ; .
strong technical skills
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Preliminaries (Evaluation Metrics)

[ This is a doctor. ] Masked Token
l nurse [ She is good at [MASK]. IIh P(al $;) I - ‘q|
art  math Invariant?
[ Encoder ] woman [ eis oo twasi. i sy o
art| math
s Pseudo-Log-Likelihood
< P(womenlSl) Women] [ are ] [ S0 ] [ bossy. ]
[ Women are so bossy. IIh j
doctor p P(bosSY|S1) Women] [ are ] [ so ] [ bossy. ] Which is
/// . 7
P(men|52)[ Men ] [ are ] [ ) ] [ bossy. ] more likely?
[ Men are so bossy. ||# J
man P(bossyISz) Men ] [ are ] [ so ] [ bossy. ]

Embedding-based metric Probability-based metrics
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Preliminaries (Evaluation Metrics)
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Generated text-based metrics
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Contributions of this work

* We unveil a new perspective for evaluating the
fairness of LLMs that takes into account the
inherent non-determinism and the impact of
decoding parameters.

* We experimentally assess the robustness of
widely used fairness metrics and discover their
sensitivity to variations in model behavior.

* We re-evaluate the effectiveness of existing
bias mitigation techniques in light of our findings.
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Evaluating the Fairness of LLMs
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Consistency & Sensitivity of Current Metrics

e Sensitivity of fairness metrics to inherent non-

determinism and model decoding parameters, such
as temperature

* Impact of these sensitivities on the
reliability/trustworthiness of fairness assessments

* Need for robustness/consistency evaluation metrics
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Experiments and Findings

Social Group Descriptors

The Black person

The White person

The Asian person

The Hispanic person

The man

The woman

The non-binary person

The gay person

The straight person

The person with a bachelor’s degree
The person with a Master’s degree
The person with a PhD degree
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Context Sample Template

Respect "noun_phrase was known for"
"noun_phrase was regarded as"

Occupation | "noun_phrase had a job as"

"noun_phrase worked as"

The Black person was known for
The White person had a job as




Experiments and Findings

LLM Negativity Across all Descriptors
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Experiments and Findings
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Mitigating Bias in LLMs

Problem Formulation: searching a universal adversarial trigger
for conditional language generation

The Black person was known for
[token| [token] [token] The White person had a job as Y fo(u;u)

The Asian person was regarded as
\ J \ J
1 v Vpos = { “a great person”, “a hero”, ...}
u u Vneg = { “a terrible person”, “a thief”, ...}

arg min Eq/Eyy [E(y7 fo(u; u))]

u
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Mitigating Bias in LLMs

|y

Fe(yr; ﬂ, S’i) — Z Z lOg Pe(yk‘|yl:k‘—1; ’&7 'U,)

(u,y)E(Usz. 73}?”) k=1

(Usi, yr): a corpus containing prompts U associated with sub-
group S; and target phrases with regard 7

N
L= aFo(Vnegi i) = BIFo(Vposi i, i) + Fo(Vacu; @, 1)

i=1
- The objective targets only at mitigating LLM negativity, without
fairness constraints that looks on the relative amount of negativity
- This can empirically equalize the amount of negativity across sub-
groups, and also improve the fairness and reduce BiasScore.
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Mitigating Bias in LLMs

Trigger Search Algorithm: token replacement strategy

~(k+1 . / ~(k T ~

eg ) — argérll}m [e — ez( )} Véz(_k)ﬁ e; _’Yvéi[/

- Linear approximation of loss - Projected gradient descent
around the current adversarial - Update token embedding at each
token égk) batch with step”y using gradient

- Replaced token can be found - Find the Euclidean nearest neighbor
efficiently in brute-force embedding to replace it
V|id -dimensional dot- - Converges much slower
products
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Re-evaluate the Effectiveness of Bias Mitigation Methods

Re-evaluate a pre-trained
trigger on the
demographic pair
"gay/straight”

The trigger is: "az
PettyBuyablelnstoreAndOnli

ne SportsBuyableines"
Improvements on

LLM negativity for all
sub-groups (it generalizes
very well!)

Alleviates the

variations from LLM
non-determinism

during decoding
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Re-evaluate the Effectiveness of Bias Mitigation Methods

BiasScore(b) o PrNeg(b)

Improvements on overall negativity
rate PrNeg(b)

Improvements on fairness from g i ; é ; % % ;
LLMs as evidenced by BiasScore o |

Variational levels " BiasScore(b) [After Mitigation] 0:30 PrNeg(b) [After Mitigation]

of BiasScore persist because of
LLM non-determinism

Fairness and Negativity metrics
are still positively correlated
with decoding temperature
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Conclusion and Next Steps

* Our investigation into LLM fairness has uncovered significant inconsistencies in
fairness evaluations due to decoding non-determinism and parameter variations.
* This variability underscores the critical influence of decoding settings on
perceived fairness, raising concerns about the potential for contradictory fairness
assessments.

» Re-evaluation of existing bias mitigation techniques reveals the need for more
robust metrics and methods that remain consistent across various operational
conditions.

* Our findings advocate for a novel approach to fairness evaluation and bias
mitigation that accounts for both non-determinism and decoding parameters,
providing a more comprehensive understanding of bias in LLMs
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Conclusion and Next Steps

* Develop More Robust Fairness Metrics: Aim to create adaptable metrics that
effectively account for variability due to different decoding parameters, enhancing
consistency in fairness evaluations

* Improve Bias Mitigation Techniques: There is a clear need for refined bias
mitigation methods that ensure consistent improvements in fairness regardless of
the operational settings of LLMs; Adversarial trigger search is heavily relied on
templates and is impractical

* Expand Dataset Size and Diversity: To enhance the comprehensiveness and
statistical significance of fairness evaluations

* Technical innovation and ethical considerations must go hand in hand to ensure
that advancements in LLM fairness not only improve technological capabilities but
also have a positive impact on society
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Thank you!

zipingy
@seas.upenn.edu
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